Recently we have prepared halonium ions which were halogen substituted in the side chain (48)³⁰ or in the ring (49 and 50).31 The nmr spectra of all ions mentioned are of interest because of the strong deshielding effect of positive halogen which leads to peaks at approximately δ 5 (methylene next to positive chlorine) and/or δ 6 (methine next to positive chlorine). (29) G. A. Olah, J. M. Bollinger, and J. Brinich, J. Amer. Chem. Soc., 90, 6989 (1968). (30) P. E. Peterson, P. R. Clifford, and F. J. Slama, ibid., 92, 2840 (1970). (31) P. E. Peterson and B. R. Bonazza, unpublished work. It should be mentioned that Olah and coworkers have now reported the preparation of many alkyl halonium ions, including CH₃ClCH₃+Sb₂F₁₁- and CH₃ICH₃+-SbF₆⁻, as stable solids at room temperature!³² The cyclic halonium ions reviewed in this Account, accordingly, are merely the heterocyclic members of a potentially enormous class of reactive compounds. We may anticipate that rapid developments will occur in the structural elaboration of these ions and in the exploitation of their chemical properties, of which their high reactivity as alkylating agents (exemplified in the reaction of eq 5; cf. ref 31 and 32) has been found to be notable. $$\begin{array}{c} & \\ & \\ \text{CI} \end{array} + \text{CH}_{3}\text{CN} \longrightarrow \begin{array}{c} & \\ & \\ \text{CI} \end{array}$$ (32) G. A. Olah and J. R. DeMember, J. Amer. Chem. Soc., 92, 718 (1970). # **Polycations of Group VI** RONALD J. GILLESPIE* Department of Chemistry, McMaster University, Hamilton, Ontario, Canada #### JACK PASSMORE Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada Received February 8, 1971 Cation formation has normally been associated with the metallic elements, but over the past few years evidence has accumulated which shows that it is a fairly common occurrence among nonmetals as well, at least insofar as polycations of the type A_n^{n+} are concerned. These polycations are important in terms of their stereochemistry and bonding and constitute a novel class of compounds of intrinsic interest. For the transition metals homonuclear groupings are well known in the "cluster" compounds which, however, have ligands attached to the metal cluster, e.g., [Mo₆Cl₈]⁴⁺. In the nonmetal cations A_m^{n+} lone pairs of electrons take the place of ligands. It has long been known that the mercurous ion is not Hg⁺, but Hg₂²⁺,^{1,2} and recently it has been shown that other metallic elements form similar cations. Thus, evidence has been presented for the formation of Cd₂²⁺,³ $Zn_2{}^{2+,4,5}\ Pb_2{}^{2+,5}\ Mg_2{}^{2+,6}\ Ca_2{}^{2+,7}\ Sr_2{}^{2+,8}$ and $Ba_2{}^{2+,8}$ on A. Ogg, Z. Phys. Chem. (Leipzig), 27, 285 (1898). See F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 2nd ed, Interscience, New York, N. Y., 1967, p 611. (3) J. D. Corbett, W. J. Burkhard, and L. F. Druding, J. Amer. Chem. Soc., 83, 76 (1961). (4) D. H. Kerridge and S. A. Tariq, J. Chem. Soc. A, 1122 (1967). (5) J. D. Van Norman, J. S. Bookless, and J. J. Egan, J. Phys. Chem., 70, 1276 (1966). (6) M. Krumpelt, J. Fischer, and I. Johnson, ibid., 72, 506 (1968). A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, ibid., 70, 2384 (1966). (8) A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, ibid., 72, 1892 (1968). addition of the respective element to the corresponding MCl₂ melt. Various bismuth polycations have been identified, and in the process many confusing results have been rationalized. The material thought to be BiCl has been shown by an X-ray study to contain Bi₉⁵⁺ in addition to $BiCl_5^{2-}$ and $Bi_2Cl_8^{2-}$. The Bi^+ , ¹⁰ Bi_5^{3+} , ¹⁰ and Bi₈²⁺¹¹ ions have been identified in melts and the compounds Bi₅(AlCl₄)₃¹² and Bi₈(AlCl₄)₂¹² isolated. Recently evidence has been given for a cation containing antimony in the 1+ oxidation state.18 Esr evidence has been presented for the formation of Ag₄⁺ or Ag₄³⁺, ¹⁴ Ag_2^{+} , 15 and Cd_2^{3+} . 15 There has long been evidence for positive oxidation states of iodine¹⁶ and the I₃⁺ and I₅⁺ ions are now well established, although "I+" has been shown to be I_2 +.17 (9) A. Hershaft and J. D. Corbett, Inorg. Chem., 2, 979 (1963). (10) N. J. Bjerrum, C. R. Boston, and G. P. Smith, ibid., 6, 1162 (11) N. J. Bjerrum and G. P. Smith, ibid., 6, 1968 (1967). (12) J. D. Corbett, *ibid.*, 7, 198 (1968) (13) R. C. Paul, K. K. Paul, and K. C. Malhotra, Chem. Commun., 453 (1970); P. A. W. Dean and R. J. Gillespie, ibid., 853 (1970). (14) R. S. Eachus and M. C. R. Symons, J. Chem. Soc. A, 1329 (1970) (15) R. S. Eachus, I. Marov, and M. C. R. Symons, Chem. Commun., 633 (1970). (16) J. Arotsky and M. C. R. Symons, Quart. Rev., Chem. Soc., **16,** 282 (1962) (17) R. J. Gillespie, J. B. Milne, and M. J. Morton, Inorg. Chem., 7, 2221 (1968), and references therein. Table I Preparative Routes to O2+ Compounds | Product | Reaction | Conditions | Ref | |---|---|--|------------| | $\mathrm{O_2PtF_6}$ | $F_2 + O_2 + Pt$ (sponge) | 425-450°; flow system | 29 | | O_2PtF_6 | $F_2O + Pt$ (sponge) | Above 400°; flow system | 29 | | $\mathrm{O_2PtF_6}$ | $egin{aligned} ext{F}_2 + ext{PtCl}_2, ext{PtCl}_4, \ ext{PtBr}_4, ext{PtI}_4 \end{aligned}$ | Above 400°; glass flow system | 29 | | $\mathrm{O_2PtF_6}$ | $\mathrm{O}_2 + \mathrm{PtF}_6$ | Tensimetric titration at room temperature | 29 | | O_2PF_6 , O_2AsF_6 | $O_2F_2 + PF_5$, AsF ₅ | Excess O_2F_2 ; -162° | 25 | | $\mathrm{O}_2\mathrm{SbF}_6$ | $O_2F_2 + SbF_5$ | -80° | 25 | | O_2BF_4 , O_2PF_6 | $O_2F_2 + BF_3$, PF_5 | Excess BF ₃ , PF ₅ , -126° | 25, 27, 31 | | O_2BF_4 | $O_4F_2 + BF_3$ | Excess BF ₃ , -138° | 31 | | O_2AsF_6 , O_2SbF_6 | $O_2 + F_2 + AsF_5$, SbF_5 | F ₂ :O ₂ : AsF ₅ , SbF ₅ ratio 0.5:1:1,
150 atm, 200°, 5 days | 32 | | O ₂ AsF ₅ , O ₂ SbF ₆ | $\mathrm{O_2}+\mathrm{F_2}+\mathrm{AsF_5},\mathrm{SbF_5}$ | Excess F ₂ and O ₂ ; Pyrex or
Kel-F vessel; exposed to
sunlight. | 24 | The evidence for other recently characterized group VII polycations, i.e., I_4^{2+} , Br_2^{+} , Br_3^{+} , and Cl_3^{+} , has been reviewed. 18 This Account is concerned with recent work on the group VI polycations which have received considerable investigation during the last few years, during which time at least nine such cations have been characterized and isolated in the form of crystalline solids. The unusual colors of solutions of sulfur, selenium, and tellurium in strong acid solvents, e.g., sulfuric acid and oleum, have been known for over 150 years, but the nature of these solutions remained obscure until it was demonstrated recently that the colors are due to polyatomic cations. #### The O_2^+ Cation **Preparation.** The existence of O_2^+ in the gas phase at low pressures has been well established. 19 However, it was not until 1962 that a compound containing this ion was identified.²⁰ This compound, a reaction product of the fluorination of platinum, or platinum salts at high temperature, in a glass or silica apparatus, was first thought to be an oxyfluoride of platinum, PtOF₄,²¹ but improved analysis showed the new compound to have the empirical formula $\mathrm{O_2PtF_{6.}}^{20}$ It was then prepared by direct oxidation of molecular oxygen by platinum hexafluoride at room temperature. Bartlett speculated that if molecular oxygen (IP 12.2 eV) could be oxidized by platinum hexafluoride, then so could xenon (IP 12.13 eV). Subsequently, Bartlett²² prepared the first compound of the so-called inert gases, XePtF₆, by the reaction of xenon with platinum hexafluoride. Claims have been made that a dioxygenyl salt was prepared prior to 1962.23 This work was reviewed in 1966,²³ with extensive reference to sources that are not readily available in the literature. Table I lists the various methods of preparing dioxygenyl compounds. The most convenient route appears to be the photochemical synthesis of O₂+AsF₆⁻ (SbF₆⁻) from oxygen, fluorine, and arsenic (antimony) pentafluoride.²⁴ **Physical Properties.** O_2PtF_6 is red, due to the PtF_6 ion, while the other compounds are colorless. Young²⁵ noted that violet areas developed on the surface of the colorless salt O₂SbF₆ on cooling to -80°, and Shamir²⁴ found the same color appeared with addition of excess pentafluoride. Various violet colors were observed in some of the chemical reactions of the oxygenyl compounds referred to in ref 23. The origin of these colors is not known. The O₂BF₄ and O₂PF₆ salts dissociate at room temperature, but the other compounds are stable. O_2PtF_6 was sublimed at 100° . The magnetic behavior of O₂⁺ in O₂PtF₆ over the temperature range 77 to 298°K is similar to that of nitric oxide, showing the presence of one unpaired electron²⁶ ($^{2}\pi$ ground state). The esr spectra of $O_2BF_4^{27}$ and $O_2AsF_6^{24}$ have single absorptions at g = 1.97 ± 0.10 and 1.998 ± 0.002 , respectively. The Raman spectra of O₂AsF₆ and O₂SbF₆ gave direct evidence for the presence of O₂+ with a strong absorption at about 1860 cm⁻¹.28 This may be compared with the value of 1876 cm⁻¹ determined from the electronic band spectrum of gaseous O_2^+ . X-Ray powder data obtained from the cubic form of O_2PtF_6 were consistent with the presence of O_2 ⁺ and PtF₆⁻ ions.²⁹ The structure was refined using neutron diffraction powder data. The PtF₆- ion was located unambiguously, but the length of the O-O bond could not be determined with certainty, probably owing to disorder of the O_2 ⁺ ion in the structure.³⁰ ⁽¹⁸⁾ R. J. Gillespie and M. J. Morton, Quart. Rev., Chem. Soc., in press. ⁽¹⁹⁾ H. Herzberg, "The Spectra of Diatomic Molecules," Van Nostrand, Princeton, N. J., 1950, p 560. (20) N. Bartlett and D. H. Lohmann, Proc. Chem. Soc., London, ^{115 (1962).} ⁽²¹⁾ N. Bartlett and D. H. Lohmann, ibid., 14 (1960). ⁽²²⁾ N. Bartlett, ibid., 218 (1962). (23) E. W. Lawless and I. C. Smith, "Inorganic High-Energy Oxidizers," Marcel Dekker, New York, N. Y., 1968, p 167. ⁽²⁴⁾ J. Shamir and J. Binenboym, Inorg. Chim. Acta, 2, 37 (1968). (25) A. R. Young, II, T. Hirata and S. I. Morrow, J. Amer. Chem. Soc., 86, 20 (1964). ⁽²⁶⁾ N. Bartlett and S. P. Beaton, Chem. Commun., 167 (1966). (27) I. Solomon, R. I. Brabets, R. K. Uenishi, J. N. Keith, and J. M. McDonough, *Inorg. Chem.*, 3, 457 (1964). ⁽²⁸⁾ J. Shamir, J. Binenboym, and H. H. Claasen, J. Amer. Chem. Soc., 90, 6223 (1968). ⁽²⁹⁾ N. Bartlett and D. H. Lohmann, J. Chem. Soc., 5253 (1962). O₂+BF₄- decomposes at a moderate rate at 0° to give O₂, F₂, and BF₃. Kinetic data and ¹⁸F tracer studies led to the conclusion that the mechanism of the decomposition involves the equilibrium $$O_2BF_4(s) \longrightarrow O_2F(g) + BF_3(g)$$ followed by a bimolecular decomposition of O₂F.³¹ It is possible that the chemistry of O₂+ has been extensively studied,23 although this information is not vet part of the general literature. ### **Sulfur Polycations** The nature of the colored solutions obtained on dissolving sulfur in oleum has remained somewhat of a mystery ever since their discovery by Bucholz in 1804.33 Red, yellow, and blue solutions have been prepared, particular attention being given to the blue solutions. The species responsible for the blue color has been variously identified as S₂O₃, ³⁴ S₂, ³⁵ the radical ion [X₂S- SX_2]^{+,36} and a species designated S_7 .³⁷ The confusing evidence concerning the blue compound "S₂O₃" has been reviewed.³⁸ The presence, but not the identity, of species in addition to the blue entity in solutions of sulfur in oleum is well established.³⁷ Recently this problem has been reinvestigated, and the various colors have been shown to be due to the cations S_{16}^{2+} , S_{8}^{2+} , and S_4^{2+} . 39-42 The S₁₆²⁺ Cation. Sulfur can be quantitatively oxidized by arsenic or antimony pentafluoride to red compounds of composition $S_{16}(AsF_6)_2$ or $S_{16}(SbF_6)_2$, according to eq 1 and 2. $$2S_8 + 3AsF_5 \xrightarrow{HF} S_{16}(AsF_6)_2 + AsF_3^{89,40}$$ (1) $$2S_8 + 3AsF_5 \xrightarrow{HF} S_{16}(AsF_6)_2 + AsF_3^{39,40}$$ $$2S_8 + 3SbF_5 \xrightarrow{or} S_{16}(SbF_6)_2 + SbF_3^{40,41}$$ (2) Sulfur has also been oxidized with S2O6F2 in fluorosulfuric acid at 0°. Conductometric and cryoscopic measurements carried out on this red solution were consistent with the formation of S₁₆²⁺ according to eq 3,40 $$2S_8 + S_2O_6F_2 \longrightarrow S_{16}^{2+} + 2SO_3F^-$$ (3) The absorption spectrum of this solution is shown in Figure 1. Magnetic susceptibility measurements on solid S₁₆(AsF₆)₂ and concentrated solutions of S₁₆²⁺ in fluoro- - (30) J. A. Ibers and W. C. Hamilton, J. Chem. Phys., 44, 1748 (1966). - (31) J. N. Keith, I. J. Solomon, I. Sheft, and H. H. Hyman, Inorg. Chem., 7, 230 (1968). - (32) J. B. Beal, Jr., C. Pupp, and W. E. White, ibid., 8, 828 (1969). - (33) C. F. Bucholz, Gehlen's News. J. Chem., 3, 7 (1804). - (34) R. Weber, Ann. Phys. (Leipzig), [2] 156, 531 (1875). - (35) R. Auerbach, Z. Phys. Chem. (Leipzig), 121, 337 (1926). (36) D. A. C. McNeil, M. Murray, and M. C. R. Symons, J. Chem. - Soc. A, 1019 (1967) (37) H. Lux and E. Bohm, Chem. Ber., 98, 3210 (1965). - (38) G. Nickless, Ed., "Inorganic Sulphur Chemistry," Elsevier, London, 1968, p 412. - (39) R. J. Gillespie and J. Passmore, Chem. Commun., 1333 (1969). (40) R. J. Gillespie, J. Passmore, P. K. Ummat, and O. C. Vaidya, Inorg. Chem., 10, 1327 (1971). - (41) J. Barr, R. J. Gillespie, and P. K. Ummat, Chem. Commun., - (42) R. J. Gillespie and P. K. Ummat, Inorg. Chem., in press. Figure 1. Absorption spectra of S_{16}^{2+} (A), S_{8}^{2+} (B), and S_{4}^{2+} (C) in solution in HSO₃F. sulfuric acid showed it to have a very small paramagnetism.³⁹ Esr studies of solutions of sulfur in oleum indicated that a signal at q = 2.027 can be associated⁴² with a species that is always present together with the S_{16}^{2+} ion, and it is probable that this is the paramagnetic S_8 + ion, existing in equilibrium with S_{16} ² +. The S_8^{2+} Cation. Compounds containing the deep blue S₈²⁺ cation have been synthesized by quantitative oxidation of sulfur by arsenic^{39,40} or antimony pentafluorides^{40,41} according to eq 4 and 5. $$S_8 + 3AsF_5 \xrightarrow{HF} S_8(AsF_6)_2 + AsF_3$$ (4) $$S_8 + 3AsF_5 \xrightarrow{HF} S_8(AsF_6)_2 + AsF_3$$ $$S_8 + 5SbF_5 \xrightarrow[\text{tube}]{SO_2} S_8(Sb_2F_{11})_2 + SbF_3$$ $$(5)$$ Oxidation of sulfur may also be effected by S₂O₆F₂ in fluorosulfuric acid to produce a blue solution containing $S_8^{2+.40}$ The absorption spectrum of this solution is shown in Figure 1. However, these solutions are not stable and slowly deposit sulfur on standing. Completely unambiguous evidence for S_8^{2+} has been provided by the X-ray study of a single crystal of $S_8(AsF_6)_2$.⁴³ The structure is given in Figure 2; it consists of a folded ring with approximate C_s symmetry and having an endo, exo conformation. The average S-S bond distance around the ring is 2.04 Å, which is identical with that in the S₈ molecule. 44,45 The average bond angle is 102° excluding the two end angles which are smaller and have an average value of 93°. There is a relatively long bond of length 2.83 Å across the middle of the ring (S₃-S₇), and the other cross-ring distances $(S_2-S_6 \text{ and } S_4-S_6)$ are somewhat shorter than the van der Waals contact distance. Thus the mole- (45) A. Caron and J. Donohue, ibid., 18, 562 (1965). ⁽⁴³⁾ C. Davies, R. J. Gillespie, J. J. Park, and J. Passmore, ibid., 10, 2781 (1971). ⁽⁴⁴⁾ S. C. Abrahams, Acta Crystallogr., 8, 66 (1955). Figure 2. Structure of the S_8^{2+} ion. cule may be described by the valence bond structure 1 and possibly others in addition, such as 2, 3, and 4, where the dashed line indicates the plane of symmetry in the molecule. The structure is very similar to that of $\mathrm{Se_8}^{2+.46}$ The solid $S_8(AsF_6)_2$ and the concentrated blue solutions are very slightly paramagnetic^{39,40} and give esr spectra (g = 2.014).⁴² It appears that S_8^{2+} is in equilibrium with a small concentration of a paramagnetic species, which it has been proposed is S_4^+ . The blue compound " S_2O_8 " thought to be a lower oxide of sulfur³⁸ must contain S_8^{2+} and may be S_8 - $(HS_3O_{10})_2$.⁴² The S_4^{2+} Cation. The pale yellow compound S_4 -(SO₃F)₂ has been prepared by carefully reacting S₂O₆F₂ with elemental sulfur in sulfur dioxide solvent at low temperature,41 and S4(SbF6)2 has been prepared by the reaction of sulfur and SbF5 at 140°. Solid materials were obtained earlier by Ruff (SbF₅S)⁴⁷ and by Peacock [(SbF₅)₂S], 48 from the reaction of SbF₅ with sulfur, but the exact nature of these solids is uncertain. It is possible that they were not pure compounds but contained SbF₃. The ultraviolet and Raman spectra⁴⁰ of S_4^{2+} are very similar to those of the Se_4^{2+} ion (Table II), suggesting that S_4^{2+} has the same structure as Se42+, namely square planar. A study of the magnetic circular dichroism of solutions of S₄²⁺ and Se₄²⁺ leads to the same conclusion.⁴⁹ The compounds S₄(SO₃F)₂ and $S_4(SbF_6)_2$ are diamagnetic and do not give esr spectra. Table III lists the preparative routes to compounds containing sulfur polycations. Solutions of Sulfur in Oleum. The reaction of sulfur with sulfuric acid and oleum has been studied by ultraviolet spectroscopy. 42 In 95–100% $\rm H_2SO_4$ sulfur forms a colloidal solution, but after 12 hr at 75° the element dissolves as $\rm S_8$ molecules. In 5% oleum oxidation is Table II | | λ_{ms} | x, nm | ——Vib | rational fre | quencies, c | m-1 | |--------------------|----------------|-------|----------------------------------|-----------------------------------|------------------------------------|--------------------------| | Cation | Strong | Weak | $ u_1(\mathrm{A}_{1\mathbf{g}})$ | $\nu_2(\mathrm{B}_{1\mathbf{g}})$ | $\nu_{3}(\mathbf{E}_{\mathrm{u}})$ | $\nu_4(\mathrm{B}_{2g})$ | | S_4^{2+} | 330 | 280 | 584 | 530 | 460 | 330 | | Se_4^{2+} | 410 | 320 | 327 | 319 | 306 | 192 | | ${ m Te_{4}}^{2+}$ | 510 | 420 | 219 | 219 | | 139 | observed and S_{16}^{2+} is formed. Increase in the SO_3 concentration causes further oxidation to S_8^{2+} and to S_4^{2+} in oleum having more than 15% SO_3 . None of these solutions is completely stable, and oxidation continues slowly to give SO_2 as the final product. The changes in the concentrations of the various sulfur cations in these solutions are also somewhat complicated by disproportionation reactions. Thus S_8^{2+} disproportionates to SO_2 and S_{16}^{2+} in oleum containing less than 15% SO_3 and S_4^{2+} disproportionates to S_8^{2+} and SO_2 in oleum containing less than 30% SO_3 . # Selenium Polycations In 1827^{50} Magnus observed that sulfuric acid dissolved selenium to give a green solution. Over the years many workers⁵¹ have investigated the nature of selenium solutions in sulfuric acid, oleum, and sulfur trioxide, providing much data but little real understanding of the system. Recently the problem has been extensively reinvestigated, and it has been shown that these solutions contain the polyatomic cations Se_4^{2+} and Se_8^{2+} .⁵² Oxidation of Selenium in Highly Acidic Solvents. 52 a. Fluorosulfuric Acid Solutions. Fluorosulfuric acid dissolves elemental selenium to form a green solution. The reaction goes faster with unpurified commercial fluorosulfuric acid containing sulfur trioxide impurity. Peroxydisulfuryl difluoride oxidizes selenium in fluorosulfuric acid to give green, yellow, and finally colorless solutions as the quantity of $S_2O_6F_2$ is increased. A photometric titration of selenium and $S_2O_6F_2$ established the oxidation state of the yellow species as $^{1}/_{2}+$, consistent with the equation $$4Se + S_2O_6F_2 = Se_4^{2+} + 2SO_3F^-$$ (6) Conductometric measurements in fluorosulfuric acid showed that two fluorosulfate ions are produced per four selenium atoms. The molecular weight of Se₄²⁺ was determined by cryoscopy. The absorption spectrum of the yellow Se₄²⁺ solution in HSO₃F is shown in Figure 3. The addition of selenium to the yellow solution up to a ratio of $Se: S_2O_6F_2$ of 8:1 did not appreciably affect the conductivity. This indicated that the SO_3F^- ion concentration remained unchanged and that the Se_4^{2+} ion is reduced by selenium according to eq 7. $$Se_4^{2+} + 4Se \longrightarrow Se_8^{2+}$$ (7) ⁽⁴⁶⁾ R. K. McMullen, D. J. Prince, and J. D. Corbett, *Chem. Commun.*, 1438 (1969). ⁽⁴⁷⁾ O. Ruff, H. Graf, W. Heller, and Knock, Chem. Ber., 39, 4310 (1906). ⁽⁴⁸⁾ E. E. Aynsley, R. D. Peacock, and P. L. Robinson, *Chem. Ind. (London)*, 1117 (1951). ⁽⁴⁹⁾ P. J. Stephens, Chem. Commun., 1496 (1969). ⁽⁵⁰⁾ G. Magnus, Ann. Phy. (Leipzig), [2] 10, 491 (1827); [2] 14, 328 (1828). ⁽⁵¹⁾ J. W. Mellor, "Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. 10, Longmans, Green and Co., London, pp 922–923. ⁽⁵²⁾ J. Barr, R. J. Gillespie, R. Kapoor, and K. C. Malhotra, Can. J. Chem., 46, 149 (1968). ## Table III Preparation of Compounds Containing Polycations of Sulfur | Product | Reaction | Conditions | Ref | |--|---------------------------------|---|--------| | $\mathrm{S}_{16}(\mathrm{AsF}_6)_2$ | $2\mathrm{S}_8+3\mathrm{AsF}_5$ | Solvent HF; slowly warmed from -78° to 0° | 39, 40 | | $S_{16}(SbF_6)_2$ | $2\mathrm{S}_8+3\mathrm{SbF}_5$ | Solvent HF: 25° | 40, 41 | | $\mathrm{S}_8(\mathrm{AsF}_6)_2$ | $S_8 + 3AsF_5$ | Solvent HF; slowly warmed from -78° to 0° | 39, 40 | | $\mathrm{S}_8(\mathrm{Sb}_2\mathrm{F}_{11})_2$ | $S_8 + 5SbF_5$ | Solvent SO ₂ ; reaction in a sealed tube at 25° | 40, 41 | | $S_4(SbF_6)_2$ | $S_8 + excess SbF_5$ | Heated at 140° for several days | 40, 41 | | $S_4(SO_3F)_2$ | $S_8 + excess S_2O_6F_2$ | Solvent SO ₂ ; temperature slowly raised from -63 to 25° | 40, 41 | Figure 3. Absorption spectra of Se₈²⁺ (A) and Se₄²⁺ (B) in solution in HSO₃F. Conductivity measurements of selenium in pure fluorosulfuric acid were also consistent with the formation of Se₈²⁺. The absorption spectrum of the green Se_8^{2+} solution is shown in Figure 3. b. Sulfuric Acid Solutions. Selenium does not dissolve in 95% sulfuric acid, but on addition of potassium persulfate green, yellow, or colorless solutions are obtained. With 100% sulfuric acid at 50-60° diamagnetic green solutions can be prepared. Conductivity measurements established the overall oxidation state of the green species as 1/4+, and cryoscopic measurements showed that seven particles are produced in solution for every eight atoms of selenium. This is consistent with eq 8, as SO₂ has a very low solubility in sulfuric acid $$8Se + 5H2SO4 = Se82+ + 2H3O+ + 4HSO4- + SO2 (8)$$ and is therefore not included in the particle count. The green solutions were oxidized with selenium dioxide, and from conductometric, spectrophotometric, and cryoscopic titrations the equivalence point was established at the Se:SeO₂ ratio of 1:0.071, consistent with eq 9. $$7Se_8^{2+} + 4SeO_2 + 24H_2SO_4 =$$ $$15Se_4^{2+} + 8H_3O^+ + 24HSO_4^- \quad (9)$$ c. Disulfuric Acid Solutions. Selenium initially gives a green solution in disulfuric acid at room temperature. The solution is not stable, however, and Table IV Preparation of Compounds Containing Polycations of Selenium | Compound | Reaction | Conditions | Ref | |---|---|---|-----| | $\mathrm{Se_4(HS_2O_7)_2}$ | Se + 65% oleum | 50-60°; left until
yellow-brown; crystals
given on standing | 54 | | $\mathrm{Se_4S_4O_{13}}$ | $Se + excess SO_3$ | 0° ; left 24 hr | 54 | | $\mathrm{Se_4}(\mathrm{SO_3F})_2$ | $4\mathrm{Se} + \mathrm{S}_2\mathrm{O}_6\mathrm{F}_2$ | Solvent HSO_3F | 54 | | $\mathrm{Se}_4(\mathrm{Sb}_2\mathrm{F}_{11})_2$ | Se + excess SbF5 | Heated at 100–140° for 6 hr | 54 | | $\mathrm{Se_4}(\mathrm{AsF_6})_2$ | $8Se + 6AsF_5$ | Solvent SO ₂ , 80° for 8
days; yellow solid de-
posited from green
solution | 61 | | $\mathrm{Se}_8(\mathrm{Sb}_2F_{11})_2$ | $8Se + 5SbF_5$ | Solvent SO_2 , -23° for 3 days | 55 | | $\mathrm{Se_8}(\mathrm{AsF_6})_2$ | $8\mathrm{Se} + 3\mathrm{AsF}_5$ | Solvent HF; warmed slowly from -78 to 0° over 3 days | 55 | | $S_8(AlCl_4)_2$
$Se_4(AlCl_4)_2$ | Obtained from Se- | -(SeCl ₄ -4AlCl ₃) melts | 46 | further oxidation occurs to give a vellow solution. The results of cryoscopic and conductometric measurements on the green solutions were consistent with the formation of Se₈²⁺ according to eq 10, and the results for the $8Se + 6H_2S_2O_7 \longrightarrow Se_8^{2+} + 2HS_3O_{10}^{-} + 5H_2SO_4 + SO_2 \quad (10)$ stable yellow solutions were consistent with the formation of Se_4^{2+} according to eq 11. $$4Se + 6H_2S_2O_7 \longrightarrow Se_4^{2+} + 2HS_3O_{10}^{-} + 5H_2SO_4 + SO_2$$ (11) Selenium polycations (Se_n^{2+} , Se_n^{+} , etc.) have also been suggested by Lundkvist⁵³ to account for the conductivity of solutions of selenium in SeCl₂. Compounds Containing the Se₄²⁺ and Se₈²⁺ Ions. A number of solid compounds of Se₄²⁺ and Se₈²⁺ have been prepared by oxidizing selenium with sulfur trioxide, oleum, SbF₅, or AsF₅. Information on these preparations is summarized in Table IV. The presence of the Se₄²⁺ and Se₈²⁺ cations in these compounds was confirmed by comparison of the Raman spectra of the solids and the absorption spectra of their solutions in oleum or HSO₃F with those obtained previously for solutions of Se₄²⁺ and Se₈²⁺ in these solvents (Figure 3 and Table II). 54,55 Se₄(HS₂O₇)₂ and Se₄S₄O₁₅ have very ⁽⁵³⁾ M. Lundkvist, Acta Chem. Scand., 22, 287 (1968). ⁽⁵⁴⁾ J. Barr, D. B. Crump, R. J. Gillespie, R. Kapoor, and P. K. Ummat, Can. J. Chem., 46, 3607 (1968). ⁽⁵⁵⁾ R. J. Gillespie and P. K. Ummat, ibid., 48, 1240 (1970). Figure 4. Structure of the Se₈²⁺ion. similar analyses and were both previously incorrectly described as SeSO₃. ⁵⁶ From phase diagram studies ⁵⁷ on the systems Se–(SeCl₄–4AlCl₃), the compounds Se₄-(AlCl₄)₂ and Se₈(AlCl₄)₂ have been identified, and the crystal structure of the latter compound has been reported. ⁴⁶ The yellow compound of empirical formula Se(SbF₅)₂ described by Aynsley, Peacock, and Robinson ⁴⁸ has not been confirmed, but it seems very probable that, whatever its exact composition, it also contains the Se₄²⁺ion. The Structures of Se₄²⁺ and Se₈²⁺. An X-ray study of Se₄(HS₂O₇)₂ has shown that Se₄²⁺ is square planar, 58,59 with an Se-Se bond length of 2.28 Å compared with the Se-Se distance of 2.34 Å in the Se₈ molecule. This square-planar structure is also consistent with the infrared and Raman spectra of several compounds containing Se₄^{2+60,61} (Table IV), and a normal coordinate analysis yielded a value of 2.2 mdyn A^{-1} for the Se-Se stretching constant, which is somewhat greater than the value of 1.67 mdvn $\rm \mathring{A}^{-1}$ obtained for the single Se-Se bond in (CH₃)₂Se₂. The square-planar arrangement is also consistent with the magnetic circular dichroism of the ion in solution.49 The short Se-Se bond length and the high force constant both indicate a bond order of somewhat greater than unity. The structure of Se_4^{2+} can be described by valence bond theory in terms of four resonance structures equivalent to 5 or by MO theory by the structure 6, where the circle denotes a closed-shell ("aromatic?") six- π -electron system.⁵⁸ Of the four π molecular or- bitals, the two, almost nonbonding (e_g) , orbitals and the lower energy (b_{2u}) bonding orbital are occupied by the six π electrons, leaving the upper antibonding (a_{1g}) orbital empty. The structure of Se₈²⁺ in Se₈(AlCl₄)₂ (Figure 4) is very Figure 5. Absorption spectra of solutions of Te_4^{2+} (A) and $Te_n^{n+}(B)$ in HSO_3F . similar to that of S_8^{2+} and consists of a folded ring in the endo,exo conformation with approximate C_s symmetry. The bond lengths around the ring vary between 2.29 and 2.36 Å and do not differ significantly from those found in α - and β -selenium, but the bond angles are smaller than in the Se_8 ring. Of particular significance is the short cross-ring distance Se_4 – Se_5 of 2.84 Å, which is considerably less than the van der Waals contact separation of approximately 3.8 Å. The other cross-ring distances do not appear to be significantly shorter than the van der Waals distance, and thus the structure is probably best described by the valence bond structure 7, although there may be a small contribution from structures analogous to 2, 3, and 4 proposed for S_8^{2+} . ### **Tellurium Polycations** In 1798 it was reported⁶² that elemental tellurium reacted with concentrated sulfuric acid to yield a red solution. More recently, Bjerrum and Smith⁶³ and Bjerrum⁶⁴ have studied the reaction of tellurium tetrachloride with tellurium in molten AlCl₃–NaCl. They obtained a purple melt which they concluded contained Te_{2n}ⁿ⁺ (probably Te₄²⁺). Awad⁶⁵ has postulated Te₂⁺ and Te⁺ to explain his results on the anodic dissolution of tellurium in nonoxidizing acids. Tellurium dissolves in fluorosulfuric acid⁶⁶ to give a red solution of identical visible–ultraviolet spectrum with that obtained by Bjerrum and Smith in molten AlCl₃–NaCl (Figure 5). Conductometric and cryoscopic measurements showed that tellurium is in the ¹/₂+ oxidation state and that the ion contains eight or fewer tellurium atoms. ⁽⁵⁶⁾ E. Dwers and M. Shimose, J. Chem. Soc., 43, 329 (1883). ⁽⁵⁷⁾ D. J. Prince, J. D. Corbett, and B. Garbisch, Inorg. Chem., in press. ⁽⁵⁸⁾ I. D. Brown, D. B. Crump, R. J. Gillespie, and D. P. Santry, *Chem. Commun.*, 853 (1968). ⁽⁵⁹⁾ I. D. Brown, D. B. Crump, and R. J. Gillespie, *Inorg. Chem.*, 10, 2319 (1971). ⁽⁶⁰⁾ R. J. Gillespie and G. P. Pez, *ibid.*, 8, 1229 (1969). ⁽⁶¹⁾ R. J. Gillespie and P. K. Ummat, unpublished results. ⁽⁶²⁾ M. H. Klaproth, Phil. Mag., 1, 78 (1798). ⁽⁶³⁾ N. J. Bjerrum and G. P. Smith, J. Amer. Chem. Soc., 90, 4472 .968). ⁽⁶⁴⁾ N. J. Bjerrum, Inorg. Chem., 9, 1965 (1970) ⁽⁶⁵⁾ S. A. Awad, Electrochim. Acta, 13, 925 (1968) ⁽⁶⁶⁾ J. Barr, R. J. Gillespie, R. Kapoor, and G. P. Pez, J. Amer. Chem. Soc., 90, 6855 (1968). Table V Preparation of Compounds Containing Polycations of Tellurium | Compound | Reaction | Conditions | Ref | |--|--|--|--------| | $Te_4(Sb_2F_{11})_2$ | ${\rm Te} + {\rm SbF_5}$ | Solvent SO ₂ ; stirred for
several days at -23°;
SO ₂ -soluble products
extracted by the sol-
vent | 68 | | ${ m TeSbF}_6$ | ${\rm Te}+{\rm SbF_5}$ | TeSbF ₆ is insoluble in
SO ₂ , therefore readily
separated from Te ₄ -
(Sb ₂ F ₁₁) ₂ | 67, 68 | | $Te_4(AsF_6)_2$ | $4\text{Te} + 3\text{AsF}_5$ | Solvent SO ₂ ; stirred at 25° for 1 day | 68 | | $\mathrm{Te_{3}AsF_{6}}$ | $6\text{Te} + 3\text{AsF}_5$ | Conditions as above | 68 | | $Te_4(\mathrm{SO}_3F)_2$ | $4\text{Te} + \text{S}_2\text{O}_\theta\text{F}_2$ | Solvent SO ₂ ; stirred at -63° and -23°, respectively, for 1 day | 68 | | ${ m TeSO_3F}$ | $4\text{Te} + \text{S}_2\text{O}_6\text{F}_2$ (excess) | Compound is unstable above -20° | 67, 68 | | $Te_4(AlCl_4)_2$ | | | | | $\left. egin{array}{l} \operatorname{Te_4(Al_2Cl_7)_2} \\ \operatorname{Te_6(AlCl_4)_2} \end{array} ight\}$ | Obtained from | $Te-(TeCl_4-4AlCl_3)$ melts | 56 | The red solids, $Te_4(Sb_2F_{11})_2$, $Te_4(SO_3F)_2$, $Te_4(AsF_6)_2$, Te₄(AlCl₄)₂, and Te₄(Al₂Cl₇)₂, have been prepared^{56,67,68} (Table V). The Raman spectrum of the tellurium cation is essentially the same in the solids and in solution (Table II). The ultraviolet, visible, and Raman spectra of the solids and their solutions and the magnetic circular dichroism of solutions of Te₄²⁺⁴⁹ were found to be very similar to those for Se₄²⁺, strongly suggesting that Te₄²⁺ also has a square-planar structure (Table II). This has very recently been confirmed by an X-ray crystallographic study of Te4(AlCl4)2 and Te₄(Al₂Cl₇)₂⁶⁹ in which the Te-Te bond length in the square Te_4^{2+} was found to be 2.67 Å. Tellurium can be oxidized by S₂O₆F₂ in fluorosulfuric acid to the yellow Tenn + 67,68 Solids of empirical formula TeSbF₆, TeSO₃F, and Te₂S₃O₁₀ have been prepared. 67,68 These compounds, and concentrated solutions of Te_n^{n+} , are diamagnetic, ruling out the possible formulas Te+, Te33+, etc. Cryoscopic measurements on $\operatorname{Te}_{n}^{n+}$ in fluorosulfuric acid showed that the cation is not Te₂²⁺, but could not distinguish with certainty between Te₄⁴⁺, Te₆⁶⁺, and Te₈⁸⁺. Possible structures are (67) J. Barr, R. J. Gillespie, G. P. Pez, P. K. Ummat, and O. C. Vaidya, J. Amer. Chem. Soc., 92, 1081 (1970). (68) J. Barr, R. J. Gillespie, G. P. Pez, P. K. Ummat, and O. C. Vaidya, *Inorg. Chem.*, 10, 362 (1971). Table VI Polycations of Group VI | | | Oxidation state | e | | |---------------------------|---------------------------|---------------------------|-------------------------------|----------------| | 1+ | 1/2+ | 1/3+ | 1/4+ | 1/8+ | | | O ₂ + | | | | | | S_4^{2+} | | $S_{8^{2}}$ + | $S_{16^{2}}$ + | | | Se_4^2 | | Se ₈ ²⁺ | | | $\mathrm{Te}_{n}{}^{n}$ + | $\mathrm{Te_{4}^{2}}^{+}$ | $\mathrm{Te_{6}^{2}}^{+}$ | | | 8, 9, and 10. The absorption spectrum of a solution of this ion in fluorosulfuric acid is given in Figure 5. A gray solid of empirical formula Te₃AsF₆ has been prepared⁶⁸ by treating tellurium with the stoichiometric amount of arsenic pentafluoride in liquid SO₂. The compound is diamagnetic, and is therefore probably $Te_6^2 + (AsF_6)_2$. In the phase diagram studies of the system Te-(TeCl₄-4AlCl₃), Corbett, et al., ⁵⁷ found the phase (Te₃AlCl₄)_n, and they were able to grow black crystals of this material by vapor-phase transport. The compound is diamagnetic, and the density and dimensions of the unit cell indicate that n = 1 or 2: hence the compound is reasonably formulated as Te₆-(AlCl₄)₂. Evidence for a lower oxidation state of tellurium has been previously obtained by Bjerrum and Smith⁶⁵ from experiments in which they added more than seven parts of tellurium to one part of TeCl4 in molten AlCl₃-NaCl. There is as yet no evidence on the structure of Te₆²⁺; the six-membered ring containing a double bond (11) is a possibility, or possibly six resonance structures of this type. # Conclusions A list of the polycations of group VI that have been prepared to date is given in Table VI. It would appear that the pattern of group VI polycation formation follows general group trends. The high π -bond energy and low σ -bond energy of oxygen favor O_2 ⁺ formation rather than the dimer O_4 ²⁺. The reverse is the case for sulfur; the high σ -bond energy relative to π -bond strength perhaps explains why elemental sulfur forms S_8 molecules rather than gaseous S_2 , and also why S_4^{2+} is formed rather than S_2^{+} . The more metallic nature of tellurium is reflected in the formation of Te_n^{n+} , the species with the highest positive charge per atom of the group VI polycations. It is clear that polycations of the main group elements are no longer just a chemical curiosity restricted to the odd isolated example but are probably a fairly general occurrence. There probably will be considerable development of this new field in the near future. ⁽⁶⁹⁾ D. A. Lokben, T. W. Couch, and J. D. Corbett, Abstracts, 160th National Meeting of the American Chemical Society, Chicago, Ill., 1970.